[생1 칼럼] 신경 전도 매칭 꿀팁
게시글 주소: https://iu.orbi.kr/00028051526
* 전도를 아예 처음 하시는 분들은 이해하기 힘들 수도 있습니다.
속도가 더 빠를수록 같은 지점에서의 막전위 값이 더 오른쪽에 찍힌다 등의 기본적인 내용들은 아셔야 이해할 수 있습니다.
혹시 이 부분에 대해 잘 모르시는 분들이 많으시다면 다음 칼럼으로 자세히 적겠습니당
'
위와 같은 유형의 문제를 풀 때 거의 모든 선생님들이 전도 그래프를 두 개 그리며 선을 긋고 푸십니다.
하지만 그런식으로 풀면 헷갈리거나 말리기 쉽고, 무엇보다 너무 느립니다.
막전위 그래프는 크게 2가지 구간으로 나눌 수 있습니다.
1) 위로 볼록한 구간
2) 아래로 볼록한 구간
그럼 우리는 크게 3가지 케이스에 대해 점검하면 모든 케이스를 대비할 수 있게 됩니다.
1. 위로 볼록한 구간
만약 문제에서 특정 지점에서의 막전위 값이 모두 위로 볼록인 구간에 속했다면 위와 같이 선을 그을 수 있게 됩니다.
예를 들어 위 기출 문제에서 지점 Ⅰ은 A와 B의 막전위 값이 -55, -20이므로 X는 -20, Y는 -55 입니다.
이렇게 그었을 때 가능한 케이스는 크게 2가지가 있습니다.
1) 신경 X가 Y보다 빨랐을 때
2) 신경 Y가 X보다 빨랐을 때
1) 자극점으로부터 같은 거리만큼 떨어졌는데, X가 Y보다 더 빠르다고 합니다.
당연히 Y에서 왼쪽(L)지점만 확정할 수 있습니다. 다른 점들은 위치 확정이 불가능합니다.
2) 자극점으로부터 같은 거리마늠 떨어졌는데, Y가 X보다 더 빠르다고 합니다.
당연히 Y에서 오른쪽(R)지점만 확정할 수 있습니다. 다른 점들은 위치 확정이 불가능합니다.
이를 통해 일반화 할 수 있는 게 생겼습니다.
" 위로 볼록인 구간에선 막전위 값이 더 작은 값만 위치 확정이 가능하다. "
(그림에서 L과 R은 위로 볼록 중심축 기준 왼쪽과 오른쪽입니다.)
2. 아래로 볼록한 구간
이때도 1번과 마찬가지로 X가 빠른 경우, Y가 빠른 경우로 나눌 수 있게 됩니다.
하지만 이 경우는 위로 볼록과 반대로, 오히려 막전위가 더 큰 값만 위치 확정이 가능합니다.
이를 통해 일반화 할 수 있는 게 생겼습니다.
" 아래로 볼록인 구간에선 막전위 값이 더 큰 값만 위치 확정이 가능하다. "
(그림에서 L과 R는 아래로 볼록 중심축 기준 왼쪽과 오른쪽입니다.)
3. 위로 볼록인 구간과 아래로 볼록인 구간이 섞여 나올 수도 있습니다.
이 경우 알 수 있는 건 하나밖에 없습니다.
" Y가 X보다 빠르다. "
지금까지 내용을 정리하면 다음과 같습니다.
1. 위로 볼록 => 작은 값만 위치 확정 가능 (느리면 L, 빠르면 R)
2. 아래로 볼록 => 큰 값만 위치 확정 가능 (느리면 L, 빠르면 R)
3. 위아래 => 전도 속도가 더 빠른 신경 찾기 가능
이 과정이 매우 자연스럽게 되셔야 합니다.
이게 익숙해지면 위 기출 문제 정도는 눈풀로도 풀 수 있게 됩니다.
지금 방법을 적용해 위의 기출 문제를 다시 풀어보겠습니다.
기본적으로 주어진 정보만을 통해 B가 A보다 빠름을 알 수 있게 됐습니다.
또한 막전위 값을 통해 Ⅱ가 d1, Ⅳ가 d4임은 이미 줬습니다.
Ⅰ은 위로 볼록 구간인데, -55가 -20보다 작으므로 위치를 확정지을 수 있고, 느리므로 L입니다.
Ⅲ은 위로 볼록 구간인데, -10이 +30보다 작으므로 위치를 확정할 수 있고, 빠르므로 R입니다.
여기까지 한 후 이제 A를 기준으로 순서를 매칭해보거나, B를 기준으로 순서를 매칭해보면 됩니다.
정상적인 문제는 보통 둘 중 하나로만 해야 순서 매칭이 가능하게 냅니다.
이 문제의 경우 B를 먼저 본다면, Ⅰ과 Ⅲ 사이의 순서 매칭이 불가능합니다.
Ⅰ이 왼쪽도 가능하고 오른쪽도 가능하기 떄문입니다.
A를 본다면, Ⅰ이 왼쪽의 -55이므로 +30보다 더 늦게 찍혔을 수밖에 없음을 알 수 있습니다.
따라서 Ⅰ이 d3이고, Ⅲ이 d2임을 알 수 있습니다.
그런데 Ⅰ과 Ⅲ의 순서가 매칭됐으므로, 다시 B로 돌아가면 B의 Ⅰ이 L인지 R인지 확정할 수 있을까요??
이때까지 본 칼럼에서 작성한 내용은 같은 지점에서 서로 다른 두 신경을 비교하여 작성한 칼럼이었습니다.
하지만 같은 이유로, 하나의 신경 내에서 여러 지점들 사이의 순서 매칭도 똑같이 할 수 있습니다.
(당연하다 여기는 분들도 계실 거고, ????? 하는 분들도 계실 텐데, 이해가 안 간다면 직접 해보세요.)
Ⅰ과 Ⅲ을 비교해보면, Ⅰ이 Ⅲ보다 막전위 값이 더 작으므로 위치를 확정할 수 있습니다.
Ⅰ은 d3고, Ⅲ은 d2이므로 Ⅰ이 상대적으로 더 늦게 자극이 도달했을 테니, 더 느리다고 생각해도 큰 문제가 없습니다.
따라서 Ⅰ은 L임을 알 수 있습니다.
비슷한 예제로 다음과 같은 기출도 있습니다.
1. 문제에서 주어진 정보들을 통해, B가 더 빠르고, Ⅳ가 d4고, 자극을 Q에 줬음을 알 수 있습니다.
2. A의 Ⅰ은 작은데 느리므로 L, B의 Ⅱ는 작은데 빠르므로 R, A의 Ⅲ은 작은데 느리므로 L입니다.
이때도 마찬가지로 신경 B내에서 순번을 매칭한다면 답이 안 나옵니다.
A를 기준으로 순번 매칭을 한다면, 당연히 왼쪽에 있는 Ⅰ과 Ⅲ은 +15인 Ⅱ보다 더 왼쪽에 있을 수밖에 없으므로 Ⅱ가 d3이고, Ⅰ과 Ⅲ은 각각 d2, d1임을 알 수 있습니다.
(이 과정이 처음에 머리로 안 된다면 그리면서 연습해주세요. 몇 번 하다보면 머릿속으로 됩니다.)
3. B내부에서 +15와 +20 중에 +15가 더 작은 값입니다. 우리는 Ⅰ~Ⅳ의 순서를 알고 있으므로
선지에서 Ⅰ이 L인지 R인지 물을 거란 거 정도는 예측하고 들어갈 수 있습니다.
확정 가능한 값이 있는데, 안 물어보면 좀 그렇잖아요,,?
Ⅰ은 d2이므로 Ⅲ보다 먼저 찍혔으니, '더 빠르다' 라고 생각할 수 있습니다.
따라서 +15는 R입니다.
대충 이런 식으로 푸시면 압도적으로 빨리 풀 수 있습니다.
그리고 지금 나온 문제들은 위로 볼록 구간에서만 다 풀리지만, 가장 내기 쉬운 유형은
1) 문제에서 대놓고 속도를 주지 않고, 위볼록 아래볼록 지점 하나를 줘서 누가 더 빠른지 판단 시키기
2) 위 볼록들로 순서 매칭
입니당
아래 볼록 구간은 사실 문제 만들기 힘들어서 거의 볼 일 없습니당
+) 사실 위의 예시 말고도 작년 9평 전도 문제도 이런 식으로 순삭할 수 있습니다 직접해보세요
반응이 좋으면 세포 분열, 전도, 가계도 파트에서 인강에는 없는
신박한 풀이들 몇 개 더 칼럼으로 쓰겠습니당 ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다시 월요일 0
또
-
대인라 정석준T 0
대인라에서도 찍튼 하시는 거 맞나요..?
-
하아 실감이안나네 잠도 잘자야하는데 휴릅할까..
-
평범한 학생이 9
3합4를 맞춘다고 하면 보통 뭐로 많이 맞추나요?
-
5시간 잤는데 왜 몸이 개운하지 암튼 오늘도 화이팅
-
지구과학1 수특 0
왜 선지들이 다 함정같지?
-
23313인데 5
경희대인문 가려면 어느정도 받아야할까요....중경 중에 가고싶은데 영어 3받으면 힘들겟죠....??
-
호우 0
환전 지연없이 안전한사이트입니다 호우평생주소.com
-
얼마 안남았으니 화이팅하세요
-
28, 29, 30번보다 26번이 어려움ㅋㅋ
-
저도 7시30분전에 똥싸기 챌린지 시작한지 일주일 좀 넘음
-
언어와매체 99 미적분 100 영어 1등급 한국사 3등급 화학1 98 생명과학1...
-
수능 10일 남았다보다 수능 담주란 말이 더 체감 확 되네 0
10일 남았단 말보다 저렇게 보니까 왤케 체감 확 되는거지..? 저 말 듣고 달력...
-
뭔가요?
-
나경누나.. 11
-
님들어제 대체 뭐함?
-
6평 9평에 둘다 13번에 낸다...? 이거 수능때도 내려나 아니면 수능땐 13번...
-
10일만 오르비 그만 해야겠다
-
생명 N제 한번 싹 풀려고하는데 올바원, 프로모터 중에 뭐풀까요? 최저라라 3등급...
-
문상으로 캐쉬충전해서 사면 싸다는데 이렇게 사도 53만원 환급받을 수 있나요?...
-
이번 주가 독서실을 14
한 주 온전히 다니는 수능 전 마지막 주라니...
-
제보 받습니다 5
채팅으로 최최최종 강사별 ebs픽 (수업중 뉘양스라도) 으냥t 황용일t 김동욱t...
-
사설 국어 지문에서 물어보는 거하고 평가원, 수능에서 물어보는 거하고 차이가 있는 거 같음 0
웬지 모르게 사설은 디테일함을 물어본다면 평가원, 수능은 디테일함 약간에 전반적인...
-
평가원은 이번 수능 수학에서 어떤 문제로 놀라게 할까 2
문제는 고1 수학이야 그렇다 쳐도 요새 노가다 문제의 비중이 높아진 거 같아서 걱정이긴 함
-
이제 본과1학년 인거같던데 과외 해주실수 있으려나… 정시로 인서울 빅5 의대...
-
진짜 이제 겨울인가봐...
-
개국한지 벌써 11일
-
밤새 비왔나 0
땅이 축축하네
-
ㅠㅠ
-
ㅈㄴ 신기함 오르비에 은근 많더라
-
국어 노베인데 1
서점 가서 국정원 독서 문학 사려는데 국정원 독서 문학 책 사도 괜찮음?
-
처음으로 차단함 수능 전에 굳이 키배 뜨면서 시간낭비 하기 싫음 생각할수록 짜증나게 하네 ㅋㅋㅋㅋ
-
ㄹㅇ 엄청 후련하고 도파민 폭발함 ㅋㅋㅋㅋ
-
이제서야 느껴 우리 공간
-
2022 시발점 찍으면서 강의 및 교재에 개선된 부분이 있으면 편집해서 2015...
-
방금 최소 10마리는 잡음.. 아니 나 이 좁은 자취방에서 대체 몇 마리와 동거 중인 거임
-
에휴
-
난이도대결 1
ㅈㄱㄴ
-
실모 난이도가 어렵든 쉽든 항상 80~88점대가 나오네 벗어날수가 없다...
-
올해 메디컬최저 1
사탐런이 가능한 학교들은 전부 올라가겠죠? 근데 건수나 동약같은경우에는 걍 경쟁률이...
-
타지에서 시험쳐야되서 부득이하게 전날 모텔갈거 같은데 전날+아침에 공부할거 가져가면...
-
깔아줄게.
-
어떻하나요
-
수능에서 중요하나요? 1순위로 외워야 되나요?
-
확통 기출강의 0
ㅊㅊ해주세요 대성으로요
-
이게 뭐야 오늘도 평화로운 오르비 오늘은 지인선 모의고사를 풀어줄 건데요 시간...
-
지구과학 앞부분 잊어버려서 복습할겸 전체단원 한번더 푸려고하는데 뭘 추천하시나용...
-
먼가 붕뜨는 느낌인데 미적에서는 더 많이 나오나요? 흠
-
방정식과 부등식 theme13 2번째강의임 무려 현강시절 윽건이를 볼 수 있음
감사합니다 ㅎ
다른것도 써주세요
:0
호..제가 쓴 칼럼이랑 비슷하군요
헉 그런가요!????! 저 베낀거아니에요 ㅠㅠㅠ 이건 작년과외할때도 다 가르쳐줘떤거 ㅠㅠㅠ
아 ㅋㅋㅋ 베꼈다는의미는아니에요 그냥 신기해서
스크랩해둘게요
와 이분 말씨발존나예쁘게한다는 분이였네 이제암 ㄷㄷ
이왜산?
역시 비교문제는 눈풀이죠
계속써주세요 !!!!!!!
오랜만에 생명해서 감을 다 잃었는데
계속 칼럼 올려주실꺼죠?
감사합니다.
빠를수록 더 뒤로 ㄹㅇ이거면 다풀림ㅋㅋ
흥분전도 비교 문제 꿀팁이네요 ㅋㅋㅋ 감사합니당
혹시 계산 문제에서의 꿀팁은 없을까요 ?
혹시 기출 중에 어떤 게 제일 어려우셨어요??
그그 뉴런마다 막전위 그래프 다른거요 몇년도 기출이었지
18년 수능 !
와우 좋아영
오오 감사합니다
최고의 칼럼 ㄷㄷ
역시 갓들은 생각하는 비슷합니다.ㅎㅎ 최수준쌤 가로비교, 세로비교가 이 얘기임. ㅎㅎ
칼럼 나머지도 기다리는중
와 진짜 말도 안 돼요 너무 감사합니다 ㅜㅜㅜㅜㅜㅜ ㅜㅜㅜㅜㅜㅜㅜㅜ
선생님 그 위로볼록에서 위치확정까지는 확실하게 이해했는데 아래로볼록은 제가 백호커리에서 배운적이없어서 설명좀 가능할까요? 아래로볼록에서 왜 일반화 할 수 있는지?? L R이 어케 확정되는지 위로볼록이랑 비교해봐도 잘 모르겠어요
우와 감사합니다