[김기대] 가형/나형 ㄱㄴㄷ
게시글 주소: https://iu.orbi.kr/00022768034
안녕하세요 김기대입니다.
오늘 중으로 기대모의고사 6월 무료배포 모의고사 1차검토가 끝나고
5/19까지 2차검토, 5/22까지 최종검토를 끝낼 예정입니다.
배포는 5/24 (금) 예정 이니, 팔로우 해놓으시고 많이들 받아가세요 ㅎㅎ
현재 검토진 기준
가형/나형 모두 1컷 88 정도로 잡히고 있습니다.
오늘은 가형/나형 시험에 공통적으로 나오는 ㄱㄴㄷ 합답형 문제를 봐볼 건데요.
많은 학생들이 힘들어하는 유형이죠.
???: 엥 쉽던데요?
뻥치지마! 그러면 왜 믿찍5 라는 말이 나와! 쉬웠으면 다 풀어내야지!
항상, 저 유형 쉽다고 하는 애들은 두 부류밖에 없죠.
i) 이미 수학 잘하는 고수들
ii) ㄱ, ㄴ 선지 개수 세서 '어 ㄱ,ㄴ은 대충 맞겠군'해서 찍은 후 ㄱ,ㄴ 도움받아서 ㄷ 푸는 쉑들
인정해 안해?? 노인정?? 응 아니야 삽인정~
근데, 맞는 말이긴 해요. 쉬워요.
합답형 문제를 어떻게 접근해가야 쉬워지는지 얘기해보도록 해요.
가형과 나형의 ㄱㄴㄷ 해법이 '약간' 다릅니다.
ㄱ,ㄴ의 도움을 받아 ㄷ을 풀어간다는 공통점이 있지만
차이점이 있는데, 이번 글과 다음 글을 통해 얘기해볼까 합니다.
문과들은 못푸는 문제니까, 비문학 읽듯이 받아들일 수 있는 부분만 받아들이고
마지막 부분 ㄱㄱ
먼저, 가형 갑니다잇
작년 문제이기 때문에, 익숙한 친구들은 수도 없이 봤을 겁니다.
바로 풀이 가볼까요? (alpha=a, beta=b라 할게요.)
ㄱ.
x=a, b에서 극값 가지니까, f'(a)=f'(b)=0을 만족시켜야겠구나. (혹은 f'(x)의 부호변화가 있어야겠구나.)
그래서 미분해서 정리해봤더니 tan a=-2a, tan b=-2b 이 나왔다!
음, 근데 ㄱ은 좀 다른 모양인데...
아, 쉽네. tan 주기가 pi니까, tan (a+pi)=tan a=-2a 로 ㄱ 참!
ㄴ.
음..
하고!!! 바로 ㄴ으로 넘어가면 안됩니다!!
아직 ㄱ에서, 해야할 것이 남았습니다.
평가원은 왜! tan a=-2a가 아니고 tan (a+pi)=-2a를 물어봤을까요.
단순히 tan a=-2a를 물어보는 것과 ㄱ. 을 비교하면 뭘 더 묻고 있나요?
tan의 주기가 pi임을 더 묻는 수준에 그치죠.
과연, '이것만' 물어보려고 저렇게 줬을까요?
물론 그럴 수 있습니다. 삼각함수의 주기 또한 중요한 내용이니까요.
하지만 정말 고수들은,
여기서 '의심'을 하고, 계속해서 a+pi를 '의식'하며 ㄴ, ㄷ을 푼다는 겁니다.
우리는 이 의식을 유지한 채로 ㄴ 으로 넘어가겠습니다.
ㄴ.
쮓!! a+pi가 또 나왔습니다.
평가원은 자비롭습니다. ㄱ에서 한 의심을 슬슬 확신으로 바꿔주고 있거든요.
a+pi로 뭔가를 해야하는구나 라는 확신.
근데 또 뭔가 이상합니다.
않위, tan 미분하면 sec^2인거 모르는 가형러 있나요?
그냥 {sec(a+pi)}^2<{sec(b)}^2 물어보면 될걸
근데 굳이 표현을 저렇게 한다?
제가 말했죠...
평가원은 자비롭습니다.
계속해서 tan란 함수를 노출시키고 있고
g'(x)이라는 기호로
순간변화율=미분계수=접선의 기울기를 강조하고 있거든요!!
이제, 이 문제를 {sec(a+pi)}^2<{sec(b)}^2 으로 바꿔 푸는 사람은 없습니다.
tan 그래프 그려놓고, x=a+pi에서의 미분계수와 x=b에서의 미분계수를 비교하려 할 것이고
이는 tan 그래프의 볼록성을 이용해 참임을 알 수 있게 됩니다.
이제. ㄷ. 으로 넘어가죠.
cf. 이 문제를 {sec(a+pi)}^2<{sec(b)}^2 방식으로만 푼 학생이 있다면,
문제풀이방식을 교정하셔야 합니다.
이 문제 정답은 이렇게 해도 나올거에요. 하지만 우린 이 문제만 풀려고 공부하는거 아니잖아요.
통용되는 해법을 연마해야 합니다.
ㄷ.
ㄱ을 풀면서 y=tan x 그래프와 y=-2x 의 두 교점 (a, tan a), (b, tanb) 가
자연스럽게 그려져있을 것이며
ㄴ을 풀면서 점 (a, tan a)을 pi만큼 평행이동한 점 (a+pi, tan a) 역시 그려져있을 것입니다.
이를 통해 알 수 있는건?
두 점 (a, tan a), (a+pi, tan a)에서의 미분계수가 서로 같음을 눈으로 확인가능했겠죠.
(논리적인 이유라면, tan 주기가 pi이기 때문에 똑같은 곡선이 반복되서 그런 겁니다.)
오케이, 그러면 ㄷ.의 우변은 함수 y=tan x의 x=a에서의 미분계수도 되지만,
x=a+pi에서의 미분계수도 되겠구나란 생각을 계속 유지하실 수 있겠죠.
그럼 ㄷ.의 우변은, 더이상 sec^2의 함숫값이 아닌
어떤 함수 (=tan x)의 미분계수, 접선의 기울기로 해석이 될거고
우변이 기울기이므로, 좌변도 기울기로 해석하면 좋겠다는 생각을 하게 됩니다.
이제, 좌변으로 가시죵.
좌변의 분모를 보자마자, 평가원의 자비로움을 한번 더 느끼셔야 합니다.
a-c+b가 익숙합니까, a+b-c가 익숙합니까.
당연히 후잡니다. 왜냐면 어렸을 때부터 입에 달고 살았거든요.
에이 비 씨 디 이 에프 쥐~ 에이치 아이 제이 케이 솰라솰라솰라살라 (리우딱 vs 리준딱)
와 우리 아들 영어 천재에엿~~~ 히릿
....
뭐 여러 연유로, 알파벳 순으로 적는게 익숙합니다.
또한,
a-1-b가 익숙합니까, a-b-1이 익숙합니까.
네 후잡니다.
전자이신 분들은, 여기서 뒤로가기를 눌러주시기 바랍니다. 헤헤
위의 두 관점에 의하여, 분모의 a+pi-b는, a-b+pi로 적혀야 더 익숙한 식이 됩니다.
(pi는 우리에게 익숙한 상수라 생각한 것)
그런데도 굳이 a+pi-b라 적어준 것은?
ㄱ, ㄴ에서 계속 노출시켰던 a+pi를 또다시 노출시키기 위함이죠.
분모를 (a+pi)-b로 묶어서, 평균변화율로 해석해달란 겁니다.
그렇게 해서, ㄷ은 부등호 방향이 반대로 되어 틀린 보기가 됨을 알 수 있습니다.
자 어떤가요.
가형에서의 ㄱㄴㄷ 합답형 문제들은
ㄷ에 대한 직접적인 힌트를
ㄱ, ㄴ의 내용 뿐만 아니라 외형적인 형태로도 계속해서 던져주고 있습니다.
그걸, 잘 받아먹는게 중요해요.
저도 한 국어 했었어서, 요새 송영준 쌤 문장강의 영상 가끔 보는데요.
(응 홍보 아니야~ 일면식도 없음)
근데 전 큰 맥락은 공감가더라구요.
같은 문장을 읽더라도 뽑아낼 수 있는 정보량이 다르다.
우리는 문장이 주는 정보를 최대치로 뽑아내야한다.
수학도 마찬가집니다.
ㄱ, ㄴ에서 말하고 싶은 출제자의 생각을 모두 뽑아내서, 그걸 이용하여
ㄷ을 풀어내려고 노력해야합니다.
다음 글)
나형 ㄱㄴㄷ에 대하여 얘기해볼 겁니다.
나형 ㄱㄴㄷ도 위와 같이 나올 수 도 있지만, 최근 출제 경향은 약간 다릅니다.
나형 ㄱㄴㄷ 다뤄줬으면 하는 문제는 댓글 사진으로 올려주세용~
년도/문제번호로 알려주면 저 모름요 머리가 안좋아서 헤헤
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
유튜브에서 잠깐 봤는데 이선균 같은데..
-
블라먹었네 2
다노
-
다군이 마음에 들어서 가나 둘다 스나하려는데
-
개꿀잼임 이거 근데 내용 다 까먹어서 시즌1부터 다시 봐야할 듯
-
캐르릉 7
방금 전동킥보드 처음타봄..재미짐
-
프로그램 뭘로 만들어요?? 한글? 어도비?
-
윤석열 대통령 "총·도끼 써서라도 국회의원 끌어내" 지시 5
윤석열 대통령이 '12·3 비상계엄' 선포 당시 총과 도끼로 문을 부수고서라도...
-
어디가든 상경복전할건데 학점따기 쉬운데는 어디임??
-
1. 소형과 vs 대형과 2. 문과 vs 이과 3.신설 vs 기존과 4. 인서울...
-
3만보 ㅇㅈ 2
힘들다
-
??
-
어그로 죄송 이대 인식 좋은거 아는데, 요즘 입결 라인으로 치면 어느 정돈가요?
-
[속보] "우원식·이재명·한동훈 체포" 검찰, 방첩사 단톡방 공개 3
[속보] "우원식·이재명·한동훈 체포" 검찰, 방첩사 단톡방 공개
-
행복하신가요??
-
너무 없는거아님? 며칠뒤에 원서접순데 쫄리게 왜그래
-
기만할게요 16
오늘저녁으로 족발에 안동소주 먹기로함
-
에휴다노 5
에휴다노
-
pt받고 온다
-
나라가 혼란스럽긴 하구나 이 시기에는 원래 떡밥이 굴러도 저런 떡밥은 안 구를 텐데
-
내 앞에 잼민이가 주머니에 양손 넣고 여유롭게 자전거 페달 밟고 지나가서 당황함
-
여러분 사랑합니다
-
가 조건보고 한주기당 아래쪽에서 교점1번,3/4파이 대입해서 a 찾았는데 이렇게하는게 정석인가요?
-
반갑습니다 3
오르비호감고닉 인사드립니다
-
중이면 어디가 좋을까요 성신여대는 융합보안공(컴공비슷한거) 생각중이고 단국대는 좀...
-
대행의대행의대행의대행인 충주맨입니다
-
[수학] 기출분석의 방법과 필요성+무료배포 이벤트+@ 16
안녕하세요 오르비 by 매시브 학원 수학강사 이대은입니다. 오늘은...
-
어휴
-
[속보]한덕수 탄핵안 가결, 찬성 192표… 사상 초유 ‘대행의 대행’ 체제로 7
한덕수 대통령 권한대행의 탄핵소추안이 27일 국회에서 가결됐다. 우원식 국회의장이...
-
굳이 노베 공수1,2는 안해도 되겠죠?
-
월급 한푼도 안 쓰고 13년 모아야 ‘서울에 내 집 마련’ 0
지난해 기준 서울에 내 집을 마련하려면 월급을 한 푼도 쓰지 않고 13년 모아야...
-
정치 말고 봇치 14
메타로갑시다
-
현재 서울 일반고 재학중인 이과 예비 고3입니다. 현재 제 고등학교는 내신은...
-
어디가셧서여
-
성적인증 25학년도 6모 3 9모 5에서 수능 1등급 맞음 9모 이후 푼 컨텐츠 :...
-
솔직히 오른쪽이든 왼쪽이든 정치인 중에 국민 생각하는 사람 별로 없는거 같고 그냥...
-
지금 우리나라 문제점으로 가장 지적되는 이공계가 부실하다 라는 점을 극복할 수 있는...
-
이제 다시 나올 수도 있는 부분임?
-
https://youtu.be/l-awUJIhr6c?si=rPely93q20pC0cM...
-
ㄹㅇ모름
-
어떻게 읽어야 효율적일까 어떻게 해야할까
-
어디 뉴스에서 가져왔는게 구도 미챴네
-
어이없네;; ㅋㅋ
-
막날까지 최종컷 0.7점까지는 오르면 그려려니할테니 붙여주
-
펑크 0
스나할때 4칸3칸 많이 학생한테 준곳 써야 한다는게 맞는건가요?
-
자기 점수와 어떤과 물어보고 합격가능성 어떻게 받았는지 로
-
딱히 어디 지지하지 않는 입장에서 뭐가 맞는지도 잘 모르겠고..
-
홍익대 합격생을 위한 노크선배 꿀팁 [홍대25][자취동네] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
진리의성선설
ㄹㅇ 인정해야해
2019학년도 6월 모의평가 21번 ㄱㄴㄷ
문제캡쳐 가즈아잇
이 문제 ㄷ선지를 0, 0에서 f에 그은 접선이라고 보는 사람이 많은데 사실 f-f'~~식을 g라고 치환하여 g에 대한 분석을 하는 것이 옳다고 봄 구조상. 어떤 모 강사의 풀이를 보고 왜 그러는지 이해가 조금 안되어서...수학풀이에 절대적인 것은 없다지만 뭐...아무튼 그렇습니다.
저도 g로 해석하는게 맞다고 생각합니다~
다른 분들 88로 보시나요....?
84~92 다양합니다 ㅋㅋ
별거 없으면 보내셔도 될 것 같아요 ㅋㅋㅋ 한문제 빼고는 완벼끄해서
ㅋㅋㅋㅋ네
아 하나더 여쭤봐도 되나요? 보기 하나만이긴한데
ㄱㄴㄷ 연결성이 좋은 문제로 선정할 예정입니다~
진공님 글도 잘 보고 있습니다 ^~^
5.24 너무 "기대"됩니다
키히
그만큼 실력 goat 이란 뜻 ㅋㅋㅋ 저도 92잡고 낸거긴 합니다
제발 잘난척좀 하지마세요 겸손할줄 알아야지
54655가 여기서 설치네;;
네 그래서요? 하고싶은말이뭔데요?
화2가지고 지랄하지말고 오르비끄고 공부나해
꼬우면 쪽지하던가요..
파급쟝한테 쉬울까봐 걱정 중
와 나형 검토하셨어요?
ㅋㅋㅋㅋ이과출신 나형 검토진들 특)
그래도 20번 좋았어용 ㅎ.ㅎ
보냈습니다~~
앗 감사합니다! 풀어보고 소감평 드리겠습니다!
100점으루다가 인증하고시퍼요
6월인걸 고려하여 출판물보다 쉽게 냈습니다~ 100점 가능띠
20번풀다 기분이좋아졌어요 ㅋㅋㅋ 설마답이? 했는데 맞더라고여
ㅋㅋㅋㅋㅋ헤헤 개념저격+방심저격..!
2등급인데 13번까지 13분걸리는데 어떻게 해야하나요 ㅠㅠ