디앤티&마약 직전모의 정오반영+해설강의
게시글 주소: https://iu.orbi.kr/00013711038
2018 디앤티&마약 직전모의고사 (나) 정답지.pdf
2018 디앤티&마약 직전모의고사 (나).pdf
안녕하세요.
마약팀 김정문입니다.
나형 21번 발문 표현에 작은 오류가 있어 수정된 파일로 재업로드 합니다.
본 모의고사는 온/오프라인 총합 약 2만명 정도의 수험생 분들이 풀어주셨습니다 :)
많은 관심가져주셔서 감사드리며, 코앞으로 다가온 수능날까지 최선을 다하시길 응원하겠습니다.
나형 해설강의
가형 해설강의
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
레어가ㅜ뭐죠 0
아무거나 샀는데 ㅈ된거임?
-
맘에 안들었는데
-
예비 n번 앙
-
개고이겠는데 현역 정시 연고공 일년 다니다가 안맞아서 메디컬가려하는데 그냥 반수 안하는게 맞나
-
설거지당했노 아오 ㅋㅋ
-
레어거래내역 4
-
레어 대만족
-
시간만
-
사실 서울러임.. 과연 그 말이 옳을까?
-
왜 안 사짐?
-
덕코좀만주세요 1
레푸어가되.
-
덕코좀만주세요 9
사고싶은 레어가 생겼습니다...
-
성의 떴음? 7
그 친구는 어떻게 됐을까
-
코인 ㅈ같아서 그냥 접으려고요 걍
-
엄벌기 1
오들오들
-
공통미적 합해서 한 3주 잡고 하면 되나?
-
레어 최다 기록 0
3개!
-
그래도 볼만한 레어면 잘 팔린디
-
맘에듬
-
맘에드는걸로만사야댐
-
레테크 꿀팁 2
씹덕냄새나는건 잘팔리니 그거 위주로하셈
-
완전히물려버렸네 5
이런젠장
-
생기부는 학교 가서 프린트 받아야 하나..
-
레어가 갖고싶다
-
꺼억
-
저어기 옆사이트는 있던데…
-
3만덕 이하 레어는 너무 못생긴거 아니면 쟁여두시고 갖고싶은 레어는 경쟁 붙여서라도...
-
저도 레어라는 것을 약탈해보고 싶어요
-
증원안해도 된다매 감당 못할거면 애초에 안했어야 되는거아님?ㄷㄷㄷ
-
사주세요
-
동년배 님들은 어느정도 투자하시는지 궁금해용
-
100만덕 만들어야지
-
가격 꼬라지 ㅋㅋ
-
과외에대한 내생각이 바뀌기시작해씀
-
십덕레어가 2
매니아층이 확실해서 가격 상승이 미쳤내
-
이어폰 끼면 자꾸 묻어나오네... 왜지
-
싱싱하고 갓나온 따뜻한 레어 팔아요
-
처음으로 붙는 예비받아서 기분은 좋네요 ㅋㅋ
-
ㅇㅇ
-
(대충 리즈시절 브금)
-
바로 나 끄아악
-
그럼 저거 팔리면 수익이 들어오는 거임? 아니면 걍 남 좋은 일 해주는 건가
-
부탁드립니다제발
-
저거 다 고점에 물린거예요 ㅇㅇ
-
선착순네명 10
오천덕 1/21 (1)
-
히토미 vs 4
조유리
-
레어 생겼냐 13
확인
가형인데 첫번째해설강의들어야하나..
나형 해설강의는 꼭 들어야겠네요
나형 해설강의 해주시는분
미모 실화?
고우시다
사랑해요
가형러인데 나형 우선 풀게요
와.... 목동러셀에서 애들이 이야기를 많이해서
이름만 듣다가 처음 영상보네요.
강의 잘들었습니다^^
헐 나형 풀어야지
나형 잘 풀었습니다 형님. 해설강의두요
근데 형은 왜 안하셨어요? 보고싶은뎅 ㅋㅋㅋ
나형 해설강의 감사하옵나이다
와 나형... 대박 채영닮았다
수능끝나고 나형 해설강의 꼭 들어야겠다
ㅋㅋ해설강의 들을까 말까 고밈했는데 들어야겠다
(나) 형에도 확통이 있어서 정말 다행이야...
해설강의 꼭 들어야 하겠네요 ㅋㅋ
가형풀고 나형듣는다
지우지 말아주세요 수능끝나고 첫번째 해설 강의 들으러 올게요
가형 해설분 올티 닮으셨다
헐 ㄹㅇㅋㅋ
헐 나형쌤미모 인강시장에서 탑인듯
헐 쉣 나형분 하시는분 누구??? 저 나형으로 바꿔야겟는데;;; 공부 잘될듯
진짜 이쁘시다 나형..
나형듣는분들 집증 안되실듯...
미모에 취해서리~
윽 심쿵 ㅠㅠㅠ
가형분 살짝 올티 닮으심 ㅋㅋ
내가 왜 나형을 듣고 있지?
가형 의문의 1패
목동러셀 갓예지T.......
가형 해설강의 ㄹㅇ루 주요문항만 해설하시네..
이거 1컷 얼마정도인가요??
한가지 궁금한게 있습니다.
(가형20번) 나형 20번 ㄷ 발문을 수정해야하지 않을까요?
접하는 상황을 이용해 푸는 문제가 되려면
" f(x)+g(x) 의 최대값이 1이 되게 하는 x의 값이 3일때 "
이렇게 수정 해야 되지 않을까요?
왜냐하면 x=3에서 최대값 1이다 라고 하면 x=3에서 굳이 접하지 않더라도 교점만 생기면 되기때문에...
교점이 생기면 최댓값이 1이 안되지 않을까요?
papapa님의 의견이 맞습니다.
교점만 생긴다면 최댓값이 1이 아닌 경우가 얼마든지 생길 수 있습니다.
papapa님의 의견이 맞습니다.
교점만 생긴다면 최댓값이 1이 아닌 경우가 얼마든지 생길 수 있습니다.
+
x=3에서 접하지 않고 교점이 생기면 최댓값이 1이 넘어가는 경우가 생깁니다.
접하는 상황은 최댓값 1이라는 조건을 통해서 생각해야 하며,
접할 때의 x값이 3이라는 것을 통해 (x-3)^2 이라는 식을 이끌어내야 합니다.
무슨의미인지는 압니다.
그래도 말의 뉘앙스상 최대값이 1이 되게하는 X의 값이 3일때 라고 하는게 더 오해의 소지가 없다고 봅니다.
x가 3인 곳에서 반드시 접해야 한다는 상황으로 풀이를 유도 하기에는 주어진 발문이 명확하지 않다고 생각합니다.
네 발문은 하나의 의견으로 받아들이겠습니다.
발문의 애매함과는 별개로,
x=3에서 교점만 가진다면 항상 최댓값 1이 된다는 님의 지적은 틀렸습니다.
제가 쓴말을 잘못 이해 한듯요
더 자세히 적으면...
원래발문의
"x=3일때 최댓값 1 "
이 부분을 두가지로 해석할 수 있어요
1.
f+g의 최댓값이 1이고 그때의 x값은 3 이므로 두 그래프가 x=3에서 접한다.
2.
x의 값을 3으로 고정했을때 f+g의 최댓값이 1이다.
따라서 두 그래프가 x=3 에서 만난다.
이렇게 두가지 해석의 여지가 있을수 있으므로 저 부분의 발문을
" f+g의 최대값이 1이 되게 하는 x의 값이 3일때 "
로 수정한다면 2번 해석의 여지가 사라지게 되죠
이런 의미로 쓴다는게 뒷 부분을 자세히 적지 않았네요
;_;
1번으로 해석하든 2번으로 해석하든
똑같이 답을 낼 수 있죠.
2번으로 해석했을 때,
"x의 값을 3으로 고정했을때 f+g의 최댓값이 1이다.
따라서 두 그래프가 x=3 에서 만난다."
에서 그치는 것이 아니라
여기서 한단계 더 나아가야죠. -> (x-3)^2 의 형태가 되어야 한다.
x=3으로 고정했을때 f+g 최댓값이 1이 되는 순간이 바로 제곱의 형태가 되어야 하는걸 캐치해야죠;
x=3 접하지 않고, 만나기만 하는 함수 아무거나 설정해서 만들어 보시면 편해요.
만나기만 하는 함수를 설정하면 x=3에서 최댓값을 가지지 않을 것이니까요 ㅎㅎ
그게 아니라 두번째 해석은
x=3인 곳에서만 직선과 곡선을 위아래로 움직였을때 최대가 1 이라고 했으므로 만나는 상황까지만 되고 교차해서 직선이 곡선 위로 올라가지 않는다
이렇게 해석할 여지가 있다는 것이었네요